The Rhythm of Death. Seasonality of Mortality in Amsterdam, 1812–1931

Author(s)

  • Katalin Buzasi Radboud University Nijmegen
  • Tim Riswick Radboud University Nijmegen

DOI:

https://doi.org/10.51964/hlcs23092

Keywords:

Mortality, Seasonality, Amsterdam

Abstract

Between 1812 and 1931, Amsterdam experienced profound demographic, social, and epidemiological changes that reshaped how, when, and why people died. By tracing seasonal mortality patterns over this time period, trends in the rhythm of death are explored in our study. Using monthly death counts from municipal yearbooks and the Amsterdam Cause-of-Death Database, and applying wavelet power spectrum analysis, we identify both persistent winter excess mortality and key disruptions caused by epidemics. For the period 1856–1891, for which continuous cause-specific data is available, our findings reveal that, although airborne infectious diseases largely shaped the winter mortality peak, excess winter deaths remained evident even after their removal. This suggests the important role of other causes-of-death, such as cardiovascular diseases, which are caused by other factors than seasonal viruses. Beyond these findings, it is argued that environmental exposures, such as temperature and reduced sunlight, alongside social inequalities in shaping seasonal vulnerability should be taken into account in future research. 

Downloads

Download data is not yet available.

References

Brandsma, T., Koek, F., Wallbrink, H., & Können, G. (2000). Het KNMI-programma Hisklim (HIstorisch KLIMaat) [The KNMI-program HISKLIM] (KNMI-publicatie No. 191). http://cdn.knmi.nl/knmi/pdf/bibliotheek/knmipubmetnummer/knmipub191.pdf

Bureau van Statistiek der Gemeente. (1910). Statistisch Jaarboek der Gemeente Amsterdam [Statistical Yearbook of Amsterdam] jaargang 1909 (1905, 1906, 1907; 1908 en 1909 ten deele. https://onderzoek.amsterdam.nl/publicatie/jaarboek-1905

Cazelles, B., Chavez, M., Magny, G. C. D., Guégan, J. F., & Hales, S. (2007). Time-dependent spectral analysis of epidemiological time-series with wavelets. Journal of the Royal Society Interface, 4(15), 625–636. https://doi.org/10.1098/rsif.2007.0212

The Eurowinter Group. (1997). Cold exposure and winter mortality from ischaemic heart disease, cerebrovascular disease, respiratory disease, and all causes in warm and cold regions of Europe. The Lancet, 349(9062), 1341–1346. https://doi.org/10.1016/S0140-6736(96)12338-2

Ekamper, P., van Poppel, F., van Duin, C., & Garssen, J. (2009). 150 years of temperature-related excess mortality in the Netherlands. Demographic Research, 21, 385–426. https://doi.org/10.4054/DemRes.2009.21.14

Fowler, T., Southgate, R. J., Waite, T., Harrell, R., Kovats, S., Bone, A., Doyle, Y., & Murray, V. (2015). Excess winter deaths in Europe: A multi-country descriptive analysis. The European Journal of Public Health, 25(2), 339–345. https://doi.org/10.1093/eurpub/cku073

Healy, J. D. (2003). Excess winter mortality in Europe: A cross country analysis identifying key risk factors. Journal of Epidemiology & Community Health, 57(10), 784–789. https://doi.org/10.1136/jech.57.10.784

Huang, D., Taha, M. S., Nocera, A. L., Workman, A. D., Amiji, M. M., & Bleier, B. S. (2023). Cold exposure impairs extracellular vesicle swarm–mediated nasal antiviral immunity. Journal of Allergy and Clinical Immunology, 151(2), 509–525.e8. https://doi.org/10.1016/j.jaci.2022.09.037

Huck, P. (1997). Shifts in the seasonality of infant deaths in nine English towns during the 19th century: A case for reduced breast feeding? Explorations in Economic History, 34(3), 368–386. https://doi.org/10.1006/exeh.1997.0677

Janssens, A., & Riswick, T. (2023). What was killing babies in Amsterdam? A study of infant mortality patterns using individual level cause-of-death data, 1856–1904. Historical Life Course Studies, 13, 235–264. https://doi.org/10.51964/hlcs13438

Janssens, A, Lammertink, O, Riswick, T., Muurling, S., Kuiper, E., & Twijnstra, M. (2023). Amsterdam Cause-of-death Database, 1854–1940 (Version No. 1.0) [Unpublished data set]. Radboud Group for Historical Demography and Family History, Radboud University.

Kinney, P. L., Schwartz, J., Pascal, M., Petkova, E., Le Tertre, A., Medina, S., & Vautard, R. (2015). Winter season mortality: Will climate warming bring benefits? Environmental Research Letters, 10(6), 064016. https://doi.org/10.1088/1748-9326/10/6/064016

Krylova, O., & Earn, D. J. (2020). Patterns of smallpox mortality in London, England, over three centuries. PLoS Biology, 18(12), e3000506. https://doi.org/10.1371/journal.pbio.3000506

Kunst, A. E., Looman, C. W. N., & Mackenbach, J. P. (1991). The decline in winter excess mortality in the Netherlands. International Journal of Epidemiology, 20(4), 971–977. https://doi.org/10.1093/ije/20.4.971

Lammertink, O. (2023). De opkomst van het moderne ziektepatroon? Doodsoorzaken, degeneratieve aandoeningen en sociale ongelijkheid in Amsterdam, 1854–1926 [The Rise of the Modern Disease Pattern? Causes of Death, Degenerative Diseases, and Social Inequality in Amsterdam, 1854–1926] [Unpublished doctoral dissertation]. Radboud University Nijmegen. https://hdl.handle.net/2066/292090

Landers, J., & Mouzas, A. (1988). Burial seasonality and causes of death in London, 1670–1819. Population studies, 42(1), 59–83. https://doi.org/10.1080/0032472031000143126

Lee, S., & Son, B. G. (2012). Long-term patterns of seasonality of mortality in Korea from the seventeenth to the twentieth century. Journal of Family History, 37(3), 270–283. https://doi.org/10.1177/0363199012440222

Lerchl, A. (1998). Changes in the seasonality of mortality in Germany from 1946 to 1995: The role of temperature. International Journal of Biometeorology, 42(2), 84–88. https://doi.org/10.1007/s004840050089

Macassa, G., Ponce de Leon, A., & Burström, B. (2006). The impact of water supply and sanitation on area differentials in the decline of diarrhoeal disease mortality among infants in Stockholm 1878–1925. Scandinavian Journal of Public Health, 34(5), 526–533. https://doi.org/10.1080/14034940600551137

Nichols, G. L., Gillingham, E. L., Macintyre, H. L., Vardoulakis, S., Hajat, S., Sarran, C. E., Amankwaah, D., & Phalkey, R. (2021). Coronavirus seasonality, respiratory infections and weather. BMC Infectious Diseases, 21(1), 1101. https://doi.org/10.1186/s12879-021-06785-2

Peltola, J., & Saaritsa, S. (2019). Later, smaller, better? Water infrastructure and infant mortality in Finnish cities and towns, 1870–1938. The History of the Family, 24(2), 277–306. https://doi.org/10.1080/1081602X.2019.1598462

Rösch, A., & Schmidbauer, H. (2018). WaveletComp 1.1: A guided tour through the R package. http://www.hs-stat.com/projects/WaveletComp/WaveletComp_guided_tour.pdf

Staddon, P., Montgomery, H., & Depledge, M. (2014). Climate warming will not decrease winter mortality. Nature Climate Change, 4, 190–194. https://doi.org/10.1038/nclimate2121

Stalpers, L. J. A., De Meere, J. M. M., & Kaplan, E. L. (2021). De sterfte in Amsterdam van 1554 tot 2021 [The mortality in Amsterdam from 1554 to 2021]. Nederlands Tijdschrift voor Geneeskunde, 165, D5962.

Thai, P. Q., Choisy, M., Duong, T. N., Thiem, V. D., Yen, N. T., Hien, N. T., Weiss, D. J., Boni, M. F., & Horby, P. (2015). Seasonality of absolute humidity explains seasonality of influenza-like illness in Vietnam. Epidemics, 13, 65–73. https://doi.org/10.1016/j.epidem.2015.06.002

Williams, N. (1992). Death in its season: Class, environment and the mortality of infants in nineteenth-century Sheffield. Social History of Medicine, 5(1), 71–94. https://doi.org/10.1093/shm/5.1.71

Wolleswinkel-van den Bosch, J. H., Looman, C. W., van Poppel, F. W., & Mackenbach, J. P. (1997). Cause-specific mortality trends in the Netherlands, 1875–1992: A formal analysis of the epidemiologic transition. International Journal of Epidemiology, 26(4), 772–781. https://doi.org/10.1093/ije/26.4.772

Downloads

Published

2025-09-01

Issue

Section

Articles

How to Cite

Buzasi, K., & Riswick, T. (2025). The Rhythm of Death. Seasonality of Mortality in Amsterdam, 1812–1931. Historical Life Course Studies, 15, 220-229. https://doi.org/10.51964/hlcs23092

Funding data