Using the Intermediate Data Structure (IDS) to Construct Files for Statistical Analysis
DOI:
https://doi.org/10.51964/hlcs9360Keywords:
STATA, Event history analysis, Survival analysis, Episodes table, History, Social history, Life courses, Demography, Historical demography, IDS, Intermediate Data StructureAbstract
The use of longitudinal historical micro-level demographic data for research presents many challenges. The Intermediate Data Structure (IDS) was developed to try to solve some of these challenges by facilitating the storing and sharing of such data. This article proposes an extension to the IDS, which allows the standardization and storage of constructed variables. It also describes how to produce a rectangular episodes file for statistical analysis from data stored in the IDS and presents programs developed for such purpose.
Downloads
References
Alter, G. (Forthcoming). Birth_intervals ver 5: A database program to create episodes for birth interval analysis from vital events. (5th ed.)
Alter, G. & Mandemakers, K. (2014). The Intermediate Data Structure (IDS) for longitudinal historical microdata, version 4. Historical Life Course Studies, 1, 1-26.
Alter, G., Mandemakers, K. & Gutmann, M. (2009). Defining and distributing longitudinal historical data in a general way through an intermediate structure. Historical Social Research, 34(3), 78-114.
Bengtsson, T., Campbell, C. & Lee, J. (2004). Life under pressure: Mortality and living standards in Europe and Asia, 1700-1900. Cambridge, Massachusetts: MIT Press.
Bengtsson, T. & Dribe, M. (2014). The historical fertility transition at the micro level: Southern Sweden 1815-1939. Demographic Research, 30(17), 493-533. https://doi.org/10.4054/DemRes.2014.30.17
Bengtsson, T., Dribe, M., Quaranta, L. & Svensson, P. (2014). The Scanian Economic Demographic Database. version 4.0 (machine-readable database). Lund: Lund University, Centre for Economic Demography.
Bengtsson, T. & Lindström, M. (2003). Airborne infectious diseases during infancy and mortality in later life in southern Sweden, 1766-1894. International Journal of Epidemiology, 32(2), 286-294. https://doi.org/10.1093/ije/dyg061
Bengtsson, T. & van Poppel, F. (2011). Socioeconomic inequalities in death from past to present: An introduction. Explorations in Economic History, 48(3), 343-356. https://doi.org/10.1016/j.eeh.2011.05.004
Cox, D. (1972). Regression models and life-tables. Journal of the Royal Statistical Society, Series B (Methodological), 34(2), 187-220.
Danell, C. (1981). The demographic data base of Umeå University. In: A. Brändström, & J. Sundin (Eds.), Tradition and transition: Studies in microdemography and social change (pp. 241-254). Umeå: Demographic Database.
Dribe, M., Van Bavel, J. & Campbell, C. (2012). Social mobility and demographic behaviour: Long term perspectives. Demographic Research, S10(8), 173-190. https://doi.org/10.1111/1468-0297.00288
Edvinsson, S. (2000). Sweden - Umeå - the Demographic Data Base at Umeå University: A resource for historical studies. In: P. Kelly Hall, R. McCaa & G. Thorvaldsen (Eds.), Handbook of international historical microdata for population research (pp. 231-248). Minneapolis, Minnesota: Minnesota Population Center.
Lindeboom, M., Portrait, F. & van den Berg, G. J. (2010). Long-run effects on longevity of a nutritional shock early in life: The Dutch potato famine of 1846–1847. Journal of Health Economics, 29(5), 617-629. https://doi.org/10.1016/j.jhealeco.2010.06.001
Lundh, C. & Kurosu, S. (2014). Similarity in difference: Marriage in Europe and Asia, 1700-1900. Cambridge, Massachusetts: MIT Press.
Mandemakers, K. (2000). Netherlands - Historical Sample of The Netherlands. In: P. Kelly Hall, R. McCaa & G. Thorvaldsen (Eds.), Handbook of international historical microdata for population research (pp. 149-178). Minneapolis, Minnesota: Minnesota Population Center.
Öberg, S. (2014). Social bodies: Family and community level influences on height and weight, southern Sweden 1818-1968. Bohus: Ale Tryckteam.
Quaranta, L. (2011). Agency of change: Fertility and seasonal migration in a nineteenth century alpine community. European Journal of Population, 27(4), 457-485. https://doi.org/10.1007/s10680-011-9241-2
Quaranta, L. (2013). Scarred for life: How conditions in early life affect socioeconomic status, reproduction and mortality in southern Sweden, 1813-1968. Lund: Media-Tryck, Lund University.
Quaranta, L. (2014). Early life effects across the life course: The impact of individually defined exogenous measures of disease exposure on mortality by sex in 19th- and 20th-century southern Sweden. Social Science & Medicine, 119, 266-273. https://doi.org/10.1016/j.socscimed.2014.04.007
Quaranta, L. (Forthcoming). STATA programs for using the Intermediate Data Structure (IDS) to construct files for statistical analysis. Historical Life Course Studies.
Reher, D. S. & Sanz-Gimeno, A. (2007). Rethinking historical reproductive change: Insights from longitudinal data for a Spanish town. Population and Development Review, 33(4), 703-727. https://doi.org/10.1111/j.1728-4457.2007.00194.x
Schofield, R. G., Reher, D. & Bideau, A. (Eds.). (1991). The decline of mortality in Europe. Oxford: Clarendon Press.
Stead, W., Hammond, W. & Straube, M. (1982). A chartless record - is it adequate? In: Proceedings of the annual symposium on computer application in medical care (p.89-94). American Medical Informatics Association. https://doi.org/10.1007/BF00995117
Therneau, T. M. & Grambsch, P. M. (2000). Modeling survival data: Extending the Cox model. New York: Springer-Verlag.
Tsuya, N. O., Feng, W., Alter, G. & Lee, J. Z. (Eds.). (2010). Prudence and pressure: Reproduction and human agency in Europe and Asia, 1700-1900. Cambridge, Massachusetts: MIT Press.
Van Bavel, J. (2004). Deliberate birth spacing before the fertility transition in Europe: Evidence from nineteenth-century Belgium. Population Studies, 58(1), 95-107. https://doi.org/10.1080/0032472032000167706
